Модуль упругости бетона в20
795792.ru

Строительный портал

Модуль упругости бетона в20

Модуль упругости бетона в20

Расчётные сопротивления и модули упругости тяжёлого бетона, мПа

Для предельных состояний 1-й группы

(призменная прочность) Rb

Для предельных состояний 2-й группы

Начальный модуль упругости тяжёлого бетона обычного твердения Eb

Начальный модуль упругости тяжёлого бетона подвергнутого тепловой обработке при атмосферном давлении

Примечание. Расчётные сопротивления бетона для предельных состояний 2-й группы равны нормативным: Rb,ser =Rb,n; Rbt,ser =R bt, n.

Расчётные сопротивления и модули упругости некоторых арматурных сталей, мПа

предельным состояниям 1-й группы

для расчёта по предельным состояниям 2-й группы

Примечание. Расчётные сопротивления стали для предельных состояний 2-й группы равны нормативным: Rs,ser =Rs,n.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

Деформации бетона

Деформативные свойства бетона определяются его начальным модулем упругости Еb. Этот модуль может быть определен в зави­симости от марки или класса бетона по таблице ниже.

Начальные модули упругости тяжелого бетона

Модуль упругости Еb·10-3 МПа

За начальный модуль упругости бетона при сжатии и растя­жении принимается отношение нормального напряжения в бето­не к его относительной деформации при величине напряжения σb ros-pipe.ru

Модуль упругости бетона

Примером таких материалов являются стали различных марок. А вот бетон к таким материалам не относится. Более того, у бетона нет ярко выраженного предела пропорциональности и предела текучести. Диаграмма напряжений бетона при постепенном загружении выглядит приблизительно так:

Однако это далеко не единственная из возможных диаграмм напряжений бетона, так как на значение деформаций ε будут влиять не только нормальные напряжения σ, возникающие в поперечных сечениях, но и множество других факторов:

Начальный модуль упругости бетона зависит от класса бетона. Значение начального модуля упругости можно определить по следующей таблице:

Таблица 1. Начальные модули упругости бетона (согласно СП 52-101-2003)

2. Время приложения нагрузки

При кратковременном действии нагрузки деформации бетона почти прямо пропорциональны напряжениям, кроме того такие деформации остаются упругими. При расчетах на кратковременное действие нагрузки (до 1-2 часов) значение приведенного модуля упругости на участках без трещин определяется по формуле:

Ebп = φb1Eb (324.1)

где φb1 = 0.85 – для тяжелых, мелкозернистых и легких бетонов на плотном мелком заполнителе; = 0.7 – для поризованных и легких бетонов на пористом мелком заполнителе.

При длительном действии нагрузки того же значения, деформации начинают увеличиваться до некоторого предела, например при σ = Rb – до точки 1 на диаграмме напряжений. После снятия нагрузки пластические деформации εпл останутся (потому они пластическими и называются), а при повторном загружении до указанного предела деформации будут прямо пропорциональны напряжениям. Процесс нарастания пластических деформаций с течением времени при постоянных нормальных напряжениях называется ползучестью бетона.

Так как при длительном действии нагрузки диаграмма напряжений стремится к показанной на рисунке 324.1, то при расчетах необходимо учитывать нелинейность изменения деформаций при линейно изменяющихся напряжениях. К тому же в изгибаемых элементах нелинейному изменению деформаций препятствует сам материал. Напомню, нормальные напряжения в поперечных сечениях изгибаемых элементов прямо пропорциональны расстоянию от центра тяжести сечения, через который проходит нейтральная линия, до рассматриваемой точки. Таким образом различные слои бетона, работающие совместно, приводят к частичному перераспределению деформаций по высоте элемента, при этом перераспределенную эпюру деформаций можно условно рассматривать как линейную:

На рисунке 324.2 показана некоторая высота сжатой зоны сечения у, при которой нормальные напряжения σ будут прямо пропорциональны расстоянию от центра тяжести до рассматриваемой точки, это соответствует работе бетона в области условно упругих деформаций. При этом изменение деформаций можно рассматривать по зависимости, показанной на рисунке 324.2.а) или 324.2.б). Часто расчетами на прочность допускается наличие в сжатой области пластического шарнира, при котором изменяется эпюра напряжений и соответственно увеличивается значение деформаций:

На основании этого для упрощения расчетов обычно принимается двухлинейная (рис. 324.3. а) или трехлинейная (рис. 324.3.б) диаграмма состояния сжатого бетона. Согласно СП 52.101.2003 трехлинейная диаграмма выглядит так:

εb1 = 0.6Rb,n/Eb1 (324.2)

Еb1 – при кратковременном действии нагрузки принимается равным Eb, а при длительном действии нагрузки определяется по следующей формуле:

Eb1 = Eb/(1 + φb,cr) (324.3)

где φb,cr – коэффициент ползучести бетона, определяемый в зависимости от класса бетона и влажности окружающей среды. Таким образом учитывается третий фактор, влияющий на модуль упругости бетона:

3. Влажность воздуха

Значение коэффициента ползучести определяется по следующей таблице:

Таблица 2. Коэффициенты ползучести бетона

а значения деформаций εbo и εb2 при необходимости (если нормальные напряжения больше 0.6Rb,n) определяются по таблице 3:

Таблица 3. Относительные деформации бетона (согласно СП 52-101.2003)

4. На значение модуля упругости бетона также влияют температура окружающей среды и интенсивность радиоактивного излучения.

Значение начальных модулей упругости, приведенных в таблице 1, соответствует температуре окружающей среды +20±5оС и нормальному радиационному фону. При изменении температуры в пределах ±20 от указанного значения влияние температуры на модуль упругости можно не учитывать. А при больших изменениях температуры следует учитывать еще и температурные деформации бетона. В целом уменьшение температуры приводит к увеличению модуля упругости, но и к повышению хрупкости материала, а увеличение температуры – к уменьшению модуля упругости и к увеличению пластичности материала.

А теперь попробуем выяснить, как все эти теоретические цифры можно применить на практике.

Определение значения модуля упругости

Имеется железобетонная прямоугольная плита перекрытия – шарнирно опертая бесконсольная балка размерами h = 20 см, b = 100 см; ho = 17.3 см; пролетом l = 5,6 м; бетон класса В15 (начальный модуль упругости Еb = 245000 кгс/см2; Rb,ser (Rb,n) = 112 кгс/см2, Rb = 85 кгс/см2); растянутая арматура класса А400 (Es= 2·106 кгс/см2) с площадью поперечного сечения As = 7.69 cм2 (5 Ø14); полная равномерно распределенная нагрузка q = 7,0 кг/см, сумма постоянных и длительных нагрузок ql = 6.5 кгс/см

1. Сначала выясним, какими будут параметры сечения при расчетном модуле упругости Еb1. Согласно формулы (324.3) и таблицы 2, при классе бетона В15 и при влажности 40-75%:

Eb1 = 245000/(1 + 3.4) = 55681 кгс/см2

2. Тогда высоту сжатой части приведенного сечения посредине балки можно найти, решив следующее уравнение:

у3 = 3As(ho – y)2Es/bEb1 (321.2.4)

Решение этого уравнения для рассматриваемой плиты даст уl/2 = 8.61 см.

Тогда приведенный момент сопротивления при такой высоте сжатой зоны сечения составит:

W = 2by2/3 = 2·100·8.612/3 = 4942.14 см3

3. Определим значение максимальных нормальных напряжений. Так как увеличение деформаций следует учитывать только при действии постоянных и длительных нагрузок, то значение момента от таких нагрузок составит:

σ = M/W = qll2/8W = 6.5·5602/(8·4942.14) = 51.56 кгс/см2 doctorlom.com

Модуль упругости бетона

⇐ ПредыдущаяСтр 10 из 14Следующая ⇒

Класс бетона В15 В20 В25 В30 В35
Еb ,кПа 20,5·106 24,0·106 27·106 29,0·106 31·106

Приведенное зна­чение K получают из предположения, что влияние различных значений Ki на работу сваи уменьшается до нуля в пределах hm–мощности слоев грунта (рис. 16), определяющих в основном работу свай на горизонтальные нагрузки

Расчетный размер сваи вычисляется по формуле

где Kэ=1 – для прямоугольного сечения сваи; Еb – начальный модуль упругости бетона; I – момент инерции поперечного сечения сваи; dс –размер поперечного сечения сваи, м.

Момент в голове сваи

Поперечная сила в голове сваи

где п – количество свай; l0 – свободная длина сваи, l0=0.

Расчет изгибающего момента Мz осуществляется с помощью ЭВМ по программе КОСТ – 2. Данные для расчета сводятся в табл. 6.

Исходные данные к расчету Mz, Qz, Pzь

Перемещение свай от единичной силы м/кН
Перемещение свай от единичной силы І/кН
Перемещение свай от единичного момента І/(кН·м)
Момент в голове сваи МВ кН·м
Поперечная сила в голове сваи QB кН
Свободная длина сваи l0 м
Коэффициент деформации сваи І/м
Жесткость сечения ствола сваи EJ кН/м2
Коэффициент пропорциональности грунта K кН/м4
Число сечений N

При свободном опирании ростверка на сваи принимается MB=0. N – количество сечений свай, в которых вычисляем вышесказанные величины при ,принимаем N=18; при N=17;при ≤3,0; .

Читать еще:  Пластификаторы для бетона инструкция по применению

Наибольший момент по длине элемента устанавливается по эпюре Mz.

Марку сваи определяют по типовому проекту 1.001-10.1[8].

Расчетные сопротивления и модули упругости для различных строительных материалов

При расчете строительных конструкций нужно знать расчетное сопротивление и модуль упругости для того или иного материала. Здесь представлены данные по основным строительным материалам.

Таблица 1. Модули упругости для основных строительных материалов.

Материал Модуль упругости Е, МПа
Чугун белый, серый (1,15. 1,60) • 10 5
» ковкий 1,55 • 10 5
Сталь углеродистая (2,0. 2,1) • 10 5
» легированная (2,1. 2,2) • 10 5
Медь прокатная 1,1 • 10 5
» холоднотянутая 1,3 • 10 3
» литая 0,84 • 10 5
Бронза фосфористая катанная 1,15 • 10 5
Бронза марганцевая катанная 1,1 • 10 5
Бронза алюминиевая литая 1,05 • 10 5
Латунь холоднотянутая (0,91. 0,99) • 10 5
Латунь корабельная катанная 1,0 • 10 5
Алюминий катанный 0,69 • 10 5
Проволока алюминиевая тянутая 0,7 • 10 5
Дюралюминий катанный 0,71 • 10 5
Цинк катанный 0,84 • 10 5
Свинец 0,17 • 10 5
Лед 0,1 • 10 5
Стекло 0,56 • 10 5
Гранит 0,49 • 10 5
Известь 0,42 • 10 5
Мрамор 0,56 • 10 5
Песчаник 0,18 • 10 5
Каменная кладка из гранита (0,09. 0,1) • 10 5
» из кирпича (0,027. 0,030) • 10 5
Бетон (см. таблицу 2)
Древесина вдоль волокон (0,1. 0,12) • 10 5
» поперек волокон (0,005. 0,01) • 10 5
Каучук 0,00008 • 10 5
Текстолит (0,06. 0,1) • 10 5
Гетинакс (0,1. 0,17) • 10 5
Бакелит (2. 3) • 10 3
Целлулоид (14,3. 27,5) • 10 2

Примечание: 1. Для определения модуля упругости в кгс/см 2 табличное значение умножается на 10 (более точно на 10.1937)

2. Значения модулей упругости Е для металлов, древесины, каменной кладки следует уточнять по соответствующим СНиПам.

Нормативные данные для расчетов железобетонных конструкций:

Таблица 2. Начальные модули упругости бетона (согласно СП 52-101-2003)

Таблица 2.1. Начальные модули упругости бетона согласно СНиП 2.03.01-84*(1996)

Примечания: 1. Над чертой указаны значения в МПа, под чертой – в кгс/см 2 .

2. Для легкого, ячеистого и поризованного бетонов при промежуточных значениях плотности бетона начальные модули упругости принимают по линейной интерполяции.

3. Для ячеистого бетона неавтоклавного твердения значения Еb принимают как для бетона автоклавного твердения с умножением на коэффициент 0,8.

4. Для напрягающего бетона значения Еb принимают как для тяжелого бетона с умножением на коэффициент a = 0,56 + 0,006В.

5. Приведенные в скобках марки бетона не точно соответствуют указанным классам бетона.

Таблица 3. Нормативные значения сопротивления бетона (согласно СП 52-101-2003)

Таблица 4. Расчетные значения сопротивления бетона (согласно СП 52-101-2003)

Таблица 4.1. Расчетные значения сопротивления бетона сжатию согласно СНиП 2.03.01-84*(1996)

Таблица 5. Расчетные значения сопротивления бетона растяжению (согласно СП 52-101-2003)

Таблица 6. Нормативные сопротивления для арматуры (согласно СП 52-101-2003)

Таблица 6.1 Нормативные сопротивления для арматуры класса А согласно СНиП 2.03.01-84* (1996)

Таблица 6.2. Нормативные сопротивления для арматуры классов В и К согласно СНиП 2.03.01-84* (1996)

Таблица 7. Расчетные сопротивления для арматуры(согласно СП 52-101-2003)

Таблица 7.1. Расчетные сопротивления для арматуры класса А согласно СНиП 2.03.01-84* (1996)

Таблица 7.2. Расчетные сопротивления для арматуры классов В и К согласно СНиП 2.03.01-84* (1996)

Нормативные данные для расчетов металлических конструкций:

Таблица 8. Нормативные и расчетные сопротивления при растяжении, сжатии и изгибе (согласно СНиП II-23-81 (1990))

листового, широкополосного универсального и фасонного проката по ГОСТ 27772-88 для стальных конструкций зданий и сооружений

Примечания:

1. За толщину фасонного проката следует принимать толщину полки (минимальная его толщина 4 мм).

2. За нормативное сопротивление приняты нормативные значения предела текучести и временного сопротивления по ГОСТ 27772-88.

3. Значения расчетных сопротивлений получены делением нормативных сопротивлений на коэффициенты надежности по материалу, с округлением до 5 МПа (50 кгс/см 2 ).

Таблица 9. Марки стали, заменяемые сталями по ГОСТ 27772-88 (согласно СНиП II-23-81 (1990))

Примечания: 1. Стали С345 и С375 категорий 1, 2, 3, 4 по ГОСТ 27772-88 заменяют стали категорий соответственно 6, 7 и 9, 12, 13 и 15 по ГОСТ 19281-73* и ГОСТ 19282-73*.
2. Стали С345К, С390, С390К, С440, С590, С590К по ГОСТ 27772-88 заменяют соответствующие марки стали категорий 1-15 по ГОСТ 19281-73* и ГОСТ 19282-73*, указанные в настоящей таблице.
3. Замена сталей по ГОСТ 27772-88 сталями, поставляемыми по другим государственным общесоюзным стандартам и техническим условиям, не предусмотрена.

Расчетные сопротивления для стали, используемой для производства профилированных листов, приводятся отдельно.

1. СНиП 2.03.01-84 “Бетонные и железобетонные конструкции”

3. СНиП II-23-81 (1990) “Стальные конструкции”

4. Александров А.В. Сопротивление материалов. Москва: Высшая школа. – 2003.

5. Фесик С.П. Справочник по сопротивлению материалов. Киев: Будiвельник. – 1982.

А еще у Вас есть уникальная возможность помочь автору материально. После успешного завершения перевода откроется страница с благодарностью и адресом электронной почты. Если вы хотите задать вопрос, пожалуйста, воспользуйтесь этим адресом. Спасибо. Если страница не открылась, то скорее всего вы осуществили перевод с другого Яндекс-кошелька, но в любом случае волноваться не надо. Главное, при оформлении перевода точно указать свой e-mail и я обязательно с вами свяжусь. К тому же вы всегда можете добавить свой комментарий. Больше подробностей в статье “Записаться на прием к доктору”

Для терминалов номер Яндекс Кошелька 410012390761783

Для Украины – номер гривневой карты (Приватбанк) 5168 7422 0121 5641

Кошелек webmoney: R158114101090

Категории:
  • Расчет конструкций . Расчетные данные
Оценка пользователей: Нет Переходов на сайт: 181163 Комментарии:

спасибо вам всеесть то что надо

Почему значения начального модуля упругости бетона при сжатии и растяжении умножаются на 10^-3? Должна ведь быть положительная степень. Выходит, что модуль упругости для бетона В25 составляет 30 кПа, но он равен 30 ГПа!

Потому, что при составлении разного рода таблиц нет необходимости писать в каждой ячейке по 3 дополнительных нуля, достаточно просто указать, что табличные значения занижены в 1000 раз. Соответственно, чтобы определить расчетное значение, нужно табличное значение не разделить, а умножить на 1000. Такая практика используется при составлении многих нормативных документов (именно в таком виде там даются таблицы) и я не вижу смысла от нее отказываться.

Тогда получается, что модуль упругости арматуры необходимо разделить на 10 в пятой степени. Или я что-то не понимаю? В рекомендациях по расчету и конструированию сплошных плит перекрытий крупнопанельных зданий 1989г. и модуль бетона и модуль арматуры умножают на 10 в третьей и на 10 в пятой степени соответственно

Попробую объяснить еще раз. Посмотрите внимательно на таблицу 1. Если бы в заглавной строке вместо “Модуль упругости Е, МПа” я бы прописал “Модуль упругости Е, МПа•10^-5”, то это избавило бы меня от необходимости в каждой строке к значению модуля упругости добавлять “•10^5”. Вот только значения модулей упругости для различных материалов различаются в сотни и даже тысячи раз, потому такая форма записи для таблицы 1 не совсем удобна. В таблицах 2 и 2.1 значения начальных модулей упругости различаются незначительно и потому использовалась такая форма записи. Более того, если вы откроете указанные нормативные документы, то лично в этом убедитесь. Традиция эта сформировалась в ту далекую пору, когда ПК и в помине не было и наборщик вручную набирал литеры в пресс для книгопечатания, так что в данном случае все вопросы не ко мне, а к Гутенбергу и его последователям.

Возможно, модуль упругости легче бы запоминался и воспринимался в ГПа, ведь тогда у стали примерно 200 единиц, а у древесины 10. 12.

Вполне возможно, вот только и ГигаПаскали – не самая наглядная и простая для восприятия размерность.

Примечание: Возможно ваш вопрос, особенно если он касается расчета конструкций, так и не появится в общем списке или останется без ответа, даже если вы задатите его 20 раз подряд. Почему, достаточно подробно объясняется в статье “Записаться на прием к доктору” (ссылка в шапке сайта).

Читать еще:  Бетонный миксер с насосом

Модуль упругости бетона (начальный, деформации): В15, В20, В25, В30

Бетонные строительные конструкции постоянно испытывают большие нагрузки. Это необходимо учитывать еще на этапе их планирования. Поэтому технологами была разработана система придания бетону способности упруго деформироваться под воздействием таких факторов, как давление и сила. Величина, характеризующая данный показатель, получила название модуль упругости бетона.

Рассчитывая строительную конструкцию, специалисты с помощью формулы вычисляют соотношение напряжения и модуль деформации бетона B25 или материала другого класса. Для удобства данные, полученные лабораторным путем, занесены в таблицы, которые соответствуют СНиП. Ими всегда можно воспользоваться при проектировании любой конструкции.

Определение упругости и единицы измерения

Значение модуля любого вида бетона определяется согласно действующему СП 52-101-2003. Это нормативный документ, таблицы которого содержат все необходимые коэффициенты для определения упругости материала на м2.

Выполняя специальные расчеты с учетом того, какова деформация используемого материала, специалисты могут точно определить величину запаса прочности сооружения арочного типа, любого перекрытия здания, автомобильного или железнодорожного моста.

В литературе для профессионалов параметр упругости принято обозначать буквой Е. На его величину влияет действующая нагрузка и структура бетона. За единицу измерения взят паскаль, поскольку напряжение, вызванное в опытном образце действующей на него силой, измеряется в паскалях.

На модуль упругости В20 и других видов влияет технология производства, в частности способ твердения: естественный, автоклавный или тепловой обработки. Важную роль играют эксплуатационные характеристики материала.

Поэтому такой показатель, как упругость не одинаковый у одного класса. Например, если рассматривать ячеистые или тяжелые материалы, имеющие одно и то же значение прочности на м2, то величины их модулей будут разные.

Для того чтобы повысить модуль упругости бетона В15, специалисты рекомендуют использовать различные методы его изготовления. Так, при автоклавной обработке появляются более высокие упругие свойства, достигающие цифры 17. Применяя тепловую обработку с использованием атмосферного давления, можно увеличить значение до 20,5. Наибольшая величина модуля достигается при естественном твердении.

Подобным образом можно поднять модуль упругости В25 — самого популярного у строителей. При этом важно помнить, что при увеличении показателя класса материала растет и показатель его сопротивляемости упругим деформациям.

От чего зависит упругость бетона

Главной характеристикой, определяющей прочность бетона, является коэффициент его упругости. Он важен для профессиональных проектировщиков, которые проводят расчеты нагрузочных способностей бетонных конструкций.

В число факторов, воздействующих на величину модуля, входят такие:

  • наполнитель (его плотность непосредственно отражается на удельном весе бетона; если это гравий или щебень, показатель выше);
  • класс (так, у В10 величина упругости равна 19, а у В30 она составляет 32,5);
  • возраст монолита (с увеличением этого показателя возрастает и прочность бетонной структуры).

Фактором воздействия является время, в течение которого материал испытывает нагрузку, и влажность воздуха. Влагосодержание окружающей среды оказывает воздействие на такой показатель, как ползучесть бетона. В этом случае во внимание принимается температура окружающей среды и показатель интенсивности радиоактивного излучения.

Такая характеристика, как деформация, во многом зависит от наличия металлического каркаса, используемого при армировании строительной конструкции. Металл отличается гораздо меньшей степенью разрушения. Поэтому для сооружений, которые будут регулярно испытывать большие нагрузки, пространственная металлическая решетка необходима.

Существует специальная таблица, разработанная согласно СП. По ней определяется начальный модуль упругости бетона.

Расчет модуля упругости в лабораторных условиях

Алгоритм определения деформации предусматривает экспериментальные исследования в лабораторных условиях с использованием стандартных образцов.

Стандартный образец исследуется с целью установить начальный и приведенный показатель. Проведя пробы, выясняют степень способности материала выдерживать сжатие или растяжение. Если материал не имеет армировочного каркаса, то он не способен к растяжению. С учетом результатов экспериментов строится график, отражающий показатели зависимости прикладываемого воздействия и разрушения опытного образца.

При расчетах учитывается равнозначность показателей упругости материала на растяжение и сжатие.

В ходе лабораторных исследований образец подвергается непрерывной возрастающей нагрузке до полного его разрушения. В диаграмму вносят данные, отражающие воздействие нагрузок на степень деформации опытного образца. На завершающем этапе рассчитывается средний показатель всех исследуемых образцов.

Методика расчета бетонных конструкций содержится в Своде правил 52-101-2003, распространяющихся на все строительные бетонные и железобетонные конструкции.

Модуль упругости бетона: виды, классификация. От чего зависит

Все растворы склонные к затвердеванию обладают определённой плотностью в застывшем состоянии, поэтому и существует такое понятие, как модуль упругости бетона, по которому и определяется его пригодность к тому или иному виду работ. Помимо этого такие смеси классифицируются еще и по маркам, но марка может включать размеров плотности и имеет более общее понятие.

Именно об этом пойдёт речь ниже, а также вы сможете увидеть здесь демонстрацию тематического видео в этой статье.

Испытание на растяжение

Классификация

Виды и таблицы

Заливка плитного фундамента

  • Все виды подобных растворов подразделяются на тяжёлые, мелкозернистые, лёгкие, поризованные, а также автоклавного твердения. Вызывает некоторое удивление, что чуть ли не все доморощенные строители об этом не имеют почти никаких знаний, хотя от этого в основном зависит качество возводимой конструкции.
  • Сами по себе бетонные изделия являются достаточно твёрдыми материалами, но под воздействием механических нагрузок типа удара, сжатия растяжения и излома даже самый высокий модуль упругости железобетона не может быть вполне достаточным, как абсолютная единица. В связи с этим классификация прочности различается на два основных показателя — сжатие и растяжение, от которых зависит переносимость других нагрузок или упругость.
Наименование бетона Модуль упругости начальный. Сжатие и растяжение Eb*10 3 . Прочность на сжатие в МПа
B1 B1,5 B2 B2,5 B3,5 B5 B7,5 B10 B12,5 В15 В20 В25 В30 B35 B40 B45 B50 B55 B60
Тяжёлые
Естественный цикл затвердевания 9,5 13 16 18 21 23 27 30 32,5 34,5 36 37,5 39 39,5 40
Тепловая обработка при атмосферном давлении 8,5 11,5 14,5 16 19 20,5 24 27 29 31 32,5 34 35 35,5 36
Автоклавная обработка 7 10 12 13,5 16 17 20 22,5 24,5 26 27 28 29 29,5 30
Мелкозернистые
А-группа (естественное отвердение) 7 10 13,5 15,5 17,5 19,5 22 24 26 27,5 28,5
Тепловая обработка при атмосферном давлении 6,5 9 12,5 14 15,5 17 20 21,5 23 24 24,5
Б-группа (естественное отвердение) 6,5 9 12,5 14 15,5 17 20 21,5 23
Теплообработка при автоклавном давлении 5,5 8 11,5 13 14,5 15,5 17,5 19 20,5
В-группа автоклавного отвердения 16,5 18 19,5 21 21 22 23 24 24,5 25
Лёгкие и горизонтальные — средняя плотность D
800 4 4,5 5 5,5
1000 5 5,5 6,3 7,2 8 8,4
1200 6 6,7 7,6 8,7 9,5 10 10,5
1400 7 7,8 8,8 10 11 11,7 12,5 13,5 14,5 15,5
1600 9 10 11,5 12,5 13,2 14 15,5 16,5 17,5 18
1800 11,2 13 14 14,7 15,5 17 18,5 19,5 20,5 21
2000 14,5 16 17 18 19,5 21 22 23 23,5
Ячеистые, автоклавное твердение, плотность D
500 1,1 1,4
600 1,4 1,7 1,8 2,1
700 1,9 2,2 2,5 2,9
800 2,9 3,4 4
900 3,8 4,5 5,5
1000 6 7
1100 6,8 7,9 8,3 8,6
1200 8,4 8,8 9,3
Читать еще:  Загородный дом из монолитного железобетона

Таблица модулей упругости бетона с учётом СНИП 2.03.01-84

Примечание. Не забывайте о том, что при нагрузке конструкции не подвергаются необратимым процессам, вызывающим критические разрушения — их свойства не изменяются. Это следует учитывать при сооружении арок или перекрытий.

Рекомендация. При монтаже тех или иных конструкций всегда следует обращать внимание на таблицы, как того требует инструкция.

Модуль упругости — от чего он зависит

Бетонные арки. Фото

В первую очередь, упругость зависит от характеристик наполнителя, к тому же, если отобразить такое влияние на графической схеме, то мы увидим прямолинейное возрастание. Получается, что чем выше значение модуля, тем больше упругость раствора, где самые высокие показатели у тяжёлых бетонов, так как там используются очень плотные наполнители — щебень и гравий. Повышение таких характеристик связано с будущей возможностью нагрузки на ту или иную конструкцию, а также от того, с какой периодичностью будет осуществляться это воздействие (узнайте здесь, как производится крепление лаг к бетонному полу).

Также, на упругость влияет время заливки конструкции или её возраст, но показатели меняются в зависимости от первоначального модуля. Но в среднем можно сказать, что бетон постоянно набирает крепость примерно в течение 50 лет! Примечательно, что все эти показатели не изменяются под воздействием температуры до 230⁰C, следовательно, вред бетону может быть нанесён только очень сильным пожаром.

Влияет на показатели процесс затвердевания раствора, который может происходить при термической обработке открытым способом, через автоклав или естественным образом. Для определения продолжительности возможной нагрузки вы берёте начальный модуль (из таблицы) и умножаете его на коэффициент, который равен 0,85.для лёгких, мелкозернистых и тяжёлых бетонов и 0,7 для поризованных.

Приготовление бетона своими руками при строительстве дома

В строительстве домов в частном порядке используется достаточно узкий спектр классности растворов, который в основном от В7,5 до В30, куда включаются такие марки, как М100, М150, М200, М250, М300, М350 и М400. Но этого диапазона вполне достаточно для малоэтажного строительства, даже если там используются плитные фундаменты и возводятся декоративные арки. Как правило, такие растворы делаются в бетономешалке или даже в большом корыте, но зато их цена от этого значительно уменьшается (читайте также статью «Облицовка газобетона: способы и их особенности»).

Примечание. Каким бы ни был модуль упругости, в любом случае сталь будет крепче, нежели бетон, поэтому, наличие армирующего каркаса значительно увеличивает такие показатели. Плотность армирования и сечение прута определяется по ГОСТ 24452-80.

Заключение

В заключение следует сказать, что резка железобетона алмазными кругами или алмазное бурение отверстий в бетоне напрямую зависят от его модуля упругости, так как от этого возрастает или падает сопротивляемость материала. Всё дело в том, что победитовые накладки на сверле или буре не справятся с гравием или даже со щебнем крупной фракции, поэтому в этих случаях целесообразнее использовать инструмент с алмазным напылением (узнайте также как сделать крепеж для газобетона).

Определение модуля упругости бетона

Определение упругости и единицы измерения

Изделия и конструкции из бетона подвергаются большим нагрузкам, причем этот процесс происходит постоянно. Технологи нашли возможность придать бетону упругость, т. е. способность упруго деформироваться при воздействии давления и силы, направленной на сжатие и расширение. Величина, которая характеризует этот показатель, называется модулем упругости бетона и по определению вычисляется с помощью формулы соотношения напряжения и упругой деформации образца: данные занесены в специальную таблицу.

Нормативные сведения также включают данные о:

  • классе материала,
  • его видах (тяжелый, мелкозернистый, легкий, пористый бетон и т. д:.),
  • технологии производства, в частности способах твердения (естественное, автоклавная или тепловая обработка).

В связи с этим модуль упругости бетона В30 может быть различным и определяться исходя из других характеристик. Если взять в качестве примера тяжелые и ячеистые бетоны одного и того же класса прочности, их модули будут иметь абсолютно разные значения. Таблица утверждена СНиП и составлена на основе результатов опытных исследований.

Таблица начальных модулей упругости E (МПа*10 -3 ) при сжатии и растяжении бетонов с различными эксплуатационными характеристиками

Классы по прочности на сжатие

Тепловая обработка при атмосферном давлении

Естественное твердение, А-группа

Тепловая обработка при атмосферном давлении

Естественное твердение, Б-группа

Автоклавное твердение, В-группа

Легкие и поризованные

Марка средней плотности, D

Ячеистые автоклавного твердения

Марка средней плотности, D

От чего зависит упругость бетона

1. Состав

Бетон с более высоким модулем упругости подвергается меньшей относительной деформации.

Значительную роль в этом играет качество цементного камня и наполнителя – двух компонентов, из которых и состоит бетон. И раствор, и заполнитель берут на себя всю нагрузку. При анализе зависимости модуля упругости бетона от модуля упругости его составляющих, исследователи выяснили, что прочность заполнителя не всегда задействуется для улучшения характеристик готового материала, а вот показатель упругости оказывает значительное влияние.

2. Класс

Начальный модуль упругости бетона при сжатии и расширении зависит от класса изделия по прочности на сжатие.

Эта зависимость устанавливается путем применения эмпирических формул, поэтому для практических целей проще всего получать информацию из готовой таблицы. Даже без сложных математических расчетов можно заметить, что модуль упругости увеличивается пропорционально прочности материала. Другими словами, чем выше класс, тем больше модуль упругости бетона, т. е. материал класса В25 является более устойчивым к относительным деформациям по сравнению с В20.

Расчет модуля упругости в лабораторных условиях

Когда речь идет о модуле упругости, принимают во внимание оба его варианта – динамический и статический. У первого значение выше и определяется в ходе вибрации образца. Статический модуль, помимо основной информации, предоставляет данные о такой характеристике, как ползучесть бетона – динамика образования деформаций при постоянной нагрузке.

При расчетах учитывают тождество модулей упругости материала как на растяжение, так и на сжатие. Замечено, что если напряжение составляет 0,2 и более максимальной прочности бетона, происходят остаточные деформации. Это приводит к тому, что при сцеплении раствора и наполнителей возникают микротрещины, а это становится причиной крошения и в конечном итоге разрушения.

Во время эксперимента образец подвергают непрерывной нагрузке, имеющей тенденцию к возрастанию, до полного разрушения. Для этого используют особое оборудование – нагружающие установки. В диаграмму вносят данные, показывающие влияние нагрузок на степень деформаций. На завершающем этапе производится расчет среднего модуля упругости всех образцов.

  • Строитель с 20-летним стажем
  • Эксперт завода «Молодой Ударник»

В 1998 году окончил СПбГПУ, учился на кафедре гражданского строительства и прикладной экологии.

Занимается разработкой и внедрением мероприятий по предупреждению выпуска низкокачественной продукции.

Разрабатывает предложения по совершенствованию производства бетона и строительных растворов.

Ссылка на основную публикацию
×
×
Adblock
detector